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Abstract 

Sensitivity analysis (SA) is a procedure for determining and quantifying the 
change in model behaviour as model input factors change. When working with 
models which consist of a large number of model inputs, identifying the most 
influential factors is of great interest. Even though some graphical tools are 
used to summarize results from SA, this approach is still rather new. Creating 
graphs that can help us visualize the results from the analysis can be very 
useful. In this study, two modern graphical techniques, namely, star plots and 
dot charts, which can be used for SA, are discussed. These visual summary tools 
help us to identify the most influential input factors at a glance. To demonstrate 
their use in SA, we utilize two different compartmental models of the global 
carbon cycle. 
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1. Introduction 

Sensitivity analysis (SA) studies how the model response variables 
respond to changes in the model inputs. The use of systematic SA on 
large, complex computational models plays an important role in science. 
As complex numerical models are being increasingly applied for problem 
solving in many application areas, such as atmospheric science, 
combustion physics and engineering, biological systems, etc., the need for 
SA is becoming more and more apparent. Saltelli [19] considers SA as a 
prerequisite for model building in any discipline where models are used. 
As Tomović and Vukobratović [21] note, SA is typically applied to initial 
conditions, time-invariant or time-variant coefficients, sampling interval, 
sampling instant, characteristic frequencies, input frequency, 
temperature effect, delay, etc.. In this study, we use the terminology 
input factor to refer to all these characteristic elements (parameters, 
variables, coefficients, etc.). 

SA methods based on sampling involve the generation and 
exploration of mappings from model input factors to model predictions. In 
these sampling-based SA methods, after the values for input factors are 
obtained by using a chosen sampling scheme, the model is run for a 
specified number of times N, and one or more output variables for each 
run are recorded. Following this step, appropriate statistical analyses, 
such as correlation measures, regression-based methods, and various 
nonparametric methods (such as correlation measures on ranks, Smirnov 
test, Cramér-von Mises test, and Mann-Whitney test) are performed on 
the output variables as dependent variables and on input factors as 
independent variables. These analyses are then used to assess input-
output relationships and effect of uncertainties in inputs on the output 
variable(s). 

Numerous graphical tools, such as scatterplots, histograms, radar 
charts, tornado charts, cobweb plots, and bar charts, have found 
applications in SA. According to a literature search by Cooke and van 



VISUALIZING AND INSPECTING SENSITIVITIES … 3

Noortwijk [6], there is very little theoretical development for graphical 
methods in SA. As they point out, when graphical methods are used in 
SA, the focus is not on visualizing data as it is in the general sense, but 
rather on visualization to support the SA. 

The objective of this study is to extend the use of two modern 
graphical techniques, namely, dot charts and star plots, to support SA. In 
the sections which follow, we first describe each test model we use to 
demonstrate the use of the two graphical tools in Section 2. The two test 
models are compartmental models of the global carbon cycle (GCC). In 
Section 3, we discuss the application of SA methods to GCC models. We 
then talk about graphical sensitivity techniques in Section 4. This is 
followed by the descriptions of dot charts and star plots, and their use in 
SA (see Sections 5 and 6). In Section 7, two different sensitivity measures 
are given and the use of dot charts and star plots to display the results 
from these measures on the two GCC models are presented. Finally, the 
discussions and conclusions are given in Section 8. 

2. The Test Models 

The two test models we adopted from the scientific literature and 
utilized in this study are compartmental models of global carbon cycle 
(GCC). They have been used to quantitatively describe the 2CO  

distribution between atmosphere and oceans, atmosphere and terrestrial 
systems, and the responses of these reservoirs to the input resulting from 
fossil fuel burning and deforestation. Next, we briefly describe these two 
test models which, from here on, we will refer to as ‘the 8-compartment 
model’ and ‘the 25-compartment model’. More detailed descriptions of 
both models along with their dynamic equations can be found in Gazioğlu 
[11]. 
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2.1. The 8-compartment model 

This compartmental model is adopted from Emanuel et al. [9]. It 
consists of eight well-mixed compartments and 15 transfer coefficients. 
The compartmental diagram of the model, consisting of 8 compartments 
and 18 transfer coefficients, is given in Figure 1. 

 

Figure 1. Diagram of the 8-compartment model. 

The atmosphere is represented by a single compartment. Two 
compartments represent carbon in the ‘surface ocean’ and ‘deep ocean’. 
Carbon in living plants is divided between ‘tree’ and ‘ground vegetation’ 
compartments. The ‘tree’ compartment is separated into two separate 
compartments, namely, ‘nonwoody parts of trees’ and ‘woody parts of 
trees’. To represent carbon in dead parts of the terrestrial systems and 
their decomposers, two compartments are used. The ‘detritus/decomposers’ 
compartment corresponds to litter and its decomposers at the soil 
surface. Carbon input to this reservoir comes from death of above-ground 
parts of vegetation. The ‘active soil carbon’ compartment consists of 
carbon in soils and its decomposers. Carbon from death and initial 
decomposition of below-ground parts of vegetation and transport of 
decomposed material from the actively decaying litter layer is transferred 
into this compartment. 
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The 2CO  emissions due to fossil fuel burning and forest clearing 

enter the system through the atmosphere compartment. The flow of 2CO  

between the compartments is described by a set of eight first-order, 
linear differential equations, which contain 23 uncertain model input 
factors   (15 transfer coefficients and 8 initial conditions). To keep this 
paper a manageable size, we only consider the initial conditions of the 

eight compartments (denoted by DD
81 xx − ) as model input factors, which 

are subject to uncertainty. Table 1 gives the nominal values of these 
initial conditions as well as the variability ranges. 

Table 1. The 8-compartment model reference case initial compartment 
contents (in units of Gt C) 

Description 

(Initial Conditions) 

Input  
Factor 

Nominal  
Value 

Range 

Atmosphere (1) D
1x  622.40 497.92 – 746.88 

Surface ocean (2) D
2x  667.37 533.90 – 800.84 

Deep ocean (3) D
3x  37542.00 30033.60 – 45050.40 

Nonwoody parts of trees (4) D
4x  38.21 30.57 – 45.85 

Woody parts of trees (5) D
5x  634.47 507.58 – 761.36 

Ground vegetation (6) D
6x  59.32 47.46 – 71.18 

Detritus/decomposers (7) D
7x  108.22 86.58 – 129.86 

Active soil carbon (8) D
8x  1131.39 905.11 – 1357.67 

2.2. The 25-compartment model 

The model and its computer implementation are adopted from a 
technical report prepared for the US Department of Energy (see Emanuel 
et al. [10]). It consists of 25 well-mixed compartments, which represent 
three major components–atmosphere, oceans, and terrestrial systems–of 
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the cycle. The atmosphere is represented by one compartment, the oceans 
by 19 globally averaged depth layers, and the terrestrial systems by five 
compartments. Figure 2 shows the compartmental diagram of the model. 
In this model, 2CO  is released to the atmosphere by fossil fuel 

combustion. Deforestation also results in a direct transfer of carbon to 
the atmosphere from ‘tree’ compartments as well as a transfer to 
‘detritus/decomposers’. The relative magnitudes of transfers from the 
atmosphere to ‘tree’ and ‘ground vegetation’ are modified by land-use 
changes. 

 

Figure 2. Diagram of the 25-compartment model. 

For this model, there are 30 independent input factors that are 
subject to uncertainty. The description of the model input factors, their 
nominal values, variability ranges, and units are given in Table 2. 
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Table 2. The 25-compartment model input factors selected for sensitivity 
analysis 

Description 
Input  
Factor 

Nominal  
Value 

Range Unit 

Initial conditions:     

Atmosphere    CA0 548.80 510.7 – 596.0 Gt C 

Nonwoody parts of trees    CF0 38.20 30.0 – 46.0 Gt C 

Woody parts of trees  CW0 634.50 507.0 – 762.0 Gt C 

Ground vegetation    CG0 59.30 47.0 – 72.0 Gt C 

Detritus/decomposers    CD0 108.20 86.0 – 130.0 Gt C 

Active soil carbon    CSL0 1131.00 905.0 – 1348.0 Gt C 

Forest clearing:     

Fraction of forest clearing 
carbon transfered to 
atmosphere 

PHIA 0.5 0.4 – 0.6 — 

Fraction of forest clearing 
carbon transfered to 
detritus/decomposers 

PHID 0.5 0.4 – 0.6 — 

Ratio of soil to detrit./decomp. 
flux to forest clearing flux 

PSIS 0.1 0.08 – 0.12 — 

Fraction of forest clearing 
release that serves to decrease 
capacity for carbon storage in 
trees 

SXIT 0.5 0.4 – 0.6 — 

Reforestation:     

Rate of re-establishment of 
tree compartments    

SIG 1.0E-6 0.8E-6 – 1.2E-6 1year−  

Rate coefficient controlling 
the time required for trees to 
dominate ground vegetation 

SS 0.2 0.16 – 0.24 1year−  

Fraction of the change in 
capacity for carbon storage in 
trees that causes a change in 
capacity for storage in ground 
vegetation 

EPS 0.5 0.4 – 0.6 — 
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Table 2 (continued) 

Description 
Input  
Factor 

Nominal  
Value 

Range Unit 

Physical & Chemical ocean:     

Depth of surface ocean    HM 75.0 60.0 – 90.0 m 

Area of surface ocean AREA 3.61E+14 2.88E+14 – 4.33E+14 2m  

Temperature change in 
surface ocean as a result of 
doubling atm. carbon content 

DELTP 3.0 1.5 – 4.5 K 

Total boron concentration in 
surface ocean  

SIGB 4.1E-4 3.27E-4 – 4.90E-4 mol/L 

Initial temperature of surface 
ocean 

TEMP0 292.75 290.75 – 294.75 K 

Chlorinity of surface water CL 19.24 15.0 – 23.0 1mL−  

Relative humidity in 
atmosphere    

RELHUM 0.75 0.6 – 0.9 — 

Terrestrial turnover times:     

Nonwoody parts of trees TF 1.75 1.4 – 2.1 year 

Woody parts of trees TW 25.00 20.0 – 30.0 year 

Ground vegetation TG 4.00 3.2 – 4.8 year 

Detritus/decomposers TD 2.00 1.6 – 2.4 year 

Active soil carbon TSL 100.00 80.0 – 120.0 year 

Soil-forming fractions:     

Woody parts of trees THW 0.1180 0.094 – 0.14 — 

Ground vegetation THG 0.3330 0.26 – 0.40 — 

Detritus/decomposers THD 0.0625 0.05 – 0.075 — 

Intrinsic recovery times:     

Nonwoody parts of trees TT2 20.0 16.0 – 24.0 year 

Ground vegetation TV2 4.0 3.2 – 4.8 year 
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3. Application of Sensitivity Analysis to  
Global Carbon Cycle Models 

In many works related to the SA of experiments, due to lack of 
knowledge about the distributions followed by the model input factors, 
the uniform/loguniform distributions are considered (Helton et al. [13]; 
Campolongo et al. [2]). For the ranges of variability, if no information 
exists, then different criteria may be adopted to obtain variability ranges 
for the model factors. For instance, Campolongo and Saltelli [3] use 

%20∓  of the nominal value as a range of variability for some of the 

factors they consider. In the same article, they mention another criterion 
for calculating variability ranges: ( ),2;21 00 KK  where 0K  is described 

as the nominal value of the input factor. In this study, for both GCC 
models under consideration, all input factors are assumed to follow 
uniform distributions and the uncertainty ranges (given in Tables 1 and 2) 
are set as %20∓  of the nominal values. 

After assigning a range and an appropriate probability distribution to 
each input factor, a sample input matrix is generated. There are several 
ways of producing input samples. In the SA framework, simple random 
sampling (SRS), Latin hypercube sampling, and importance sampling are 
commonly used. The purpose of all sampling techniques is the same: to 
obtain a good coverage of the sample space of the input factors. 
Comparison of these sampling methods and their effects on the results 
have been discussed by Helton and Davis [14, 15]. Because SRS is easy to 
implement, easy to explain, and because the models considered here are 
not computationally expensive to evaluate, SRS was used to generate the 
input matrix. Considering the large dimensions of the input spaces of the 
two GCC models, a sample size of N = 5000 was used. As a general rule 
suggested by Crosetto et al. [7], about 100 runs for each input factor are 
commonly performed. Based on this, it is believed that 5000 runs are 
sufficient to cover the whole input space in both models. However, to 
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assess the effect of different sample sizes on the analysis results and to 
show how to display these results in dot charts for easy comparison, we 
also considered N = 100. 

In this study, SA methods based on Monte Carlo simulations are 
carried out by following three steps: (i) selection of random, independent 
sets of values for model input factors; (ii) initialization of the carbon cycle 
model; and (iii) simulation of GCC dynamics between years 1750 and 
2100. Initialization of a carbon cycle model involves a calibration step in 
which the model is set up such that steady-state is maintained, i.e., the 
flux of 2CO  leaving compartment i is equal to the flux of 2CO  coming 

into that compartment, before the system in perturbed with any input. In 
other words, it is assumed that 0=dtdxi  in year 1750 when the model 

simulations are started. The 25-compartment model has a built-in 
calibration process in the model computer code but the computer code of 
the 8-compartment model does not. In order to enforce this important 
modelling assumption of initial steady-state, the computational 
procedures we introduced in a recent study can be used (see Gazioğlu and 
Scott [12]). One of these methods is based on treating a subset of model 
input factors as uncertain input factors while using others in the model 
calibration process. The other method, called windowing analysis, is 
based on adjusting the values of model input factors to achieve an 
acceptable match between observed and predicted model conditions. For 
detailed description of both methods, see the reference mentioned above. 

After the initialization process puts the system in steady-state, the 
anthropogenic release of 2CO  from combustion of fossil fuels and 

changes in the land-use (mainly from deforestation) are introduced into 
each GCC model through the atmosphere compartment and the GCC 
dynamics are simulated. For each model, beginning from the 
preindustrial steady-state, the quantities of carbon stored in each 
compartment are calculated at annual intervals (from year 1750 to 2100). 
The 1751-2007 historic global annual 2CO  emissions from Boden et al. 
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[1] are used as input to the models. For predictions of 2CO  for the period 

2008-2100, the scenario IS92a of the Intergovernmental Panel on 
Climate Change (IPCC) is used. The IS92a scenario (also known as the 
Business-as-Usual scenario) represents a middle-of-the range scenario 
due to modest and largely offsetting changes in the underlying 
assumptions. More information on this and the IPCC’s other scenarios 
can be found in Houghton et al. [16]. 

4. Graphical Sensitivity Methods 

A literature search done by Cooke and van Noortwijk [6] shows very 
little theoretical development for graphical methods in sensitivity 
analysis. There exist reference books in the literature, for example, 
Robbins [18]; Cleveland [4]; and du Toit et al. [8], which study 
visualization of univariate and multivariate data. As Cooke and van 
Noortwijk mention, when graphical methods are used in SA, the focus is 
not visualizing data as it is in the general sense, but rather on 
visualization to support this analysis. 

Numerous graphical tools have found application in SA. Some of 
these are scatterplots, scatterplot matrix, overlay scatterplot, tornado 
charts, and cobweb plots. These graphs and their use in SA are described 
in detail by Cooke and van Noortwijk in Chapter 11 of the book 
“Sensitivity Analysis” (Edited by Saltelli et al. [20]). Here, we give a brief 
description of each and refer the interested reader to the aforementioned 
reference for more detail. 

A useful non-quantitative screening technique is a sequence of 
scatterplots in which, each response variable (model prediction) appears 
on the vertical axis and each explanatory variable (model input factor) 
appears in turn on the horizontal axis. In SA, scatterplots of the input-
output relationships are used as a guide to better understanding of the 
model behaviour. If the relationship is strong, this indicates that the 
considered model input has significant effect on the model output. 
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A scatterplot matrix (also called matrix plot) can also be produced. 
This type of plot displays the main features of the 2D relationships 
between each pair of variables without reference to the other variables. 
However, as the number of variables increases, it becomes harder to 
interpret the set of plots and obtain an overall sense of the data 
configuration. There is no doubt that generating scatterplots is the 
simplest SA method. One disadvantage of this technique is that, it 
requires drawing and inspecting a large number of plots, at least one plot 
for each model input factor. Considering that we may need to analyze 
several model outputs which may also be time dependent, then the 
number of plots needed becomes quite large. 

Tornado charts are basically bar graphs of any global sensitivity 
measures (for instance, rank correlation coefficients) arranged in 
decreasing order of absolute value and arranged vertically. 

Cobweb plots are used in identifying local probabilistically important 
factors. These plots give a picture of the joint distribution of the 
percentiles of up to 20 variables. Each parallel vertical line in a cobweb 
plot represents one variable, and the possible values of these variables 
are given on these lines. Then each set of values is marked on the vertical 
lines and connected by a jagged line. 

Other graphical methods, such as histograms, radar charts, pie 
charts, and bar charts are also used in SA. 

In the next two sections, we describe two modern graphical tools 
(namely, dot charts and star plots), which we suggest may also be used 
for SA. These plots can be drawn using the S language. Both S-PLUS and 
R, which are two implementations of S, have the ‘dotchart’ and ‘stars’ 
functions that can be utilized to create these two types of plots. S-PLUS 
is a commercial software sold by TIBCO Software Inc. R is an                  
open source software and can be downloaded free of charge from 
http://www.r-project.org/. 
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5. Dot Charts 

Dot charts are similar to bar charts with dots connected to the axis by 
lines instead of bars. According to research, dot charts are more easily 
understood than bar charts (see, for instance, Robbins [17]; Robbins [18]; 
Cleveland and Fisher [5]). They are less cluttered and easier to interpret. 

The sensitivity measures calculated on a model output and input 
factors can be presented in a dot chart very effectively. Sensitivity 
measure is displayed on the horizontal axis and the input identifier goes 
up on the left side. The variable (model output) with the highest 
sensitivity measure is plotted furthest from the side and the variable 
with the lowest sensitivity measure is plotted closest to the side. See 
Subsection 7.1 for dot charts, we used to show results from an SA method 
applied to the 8-compartment model. 

They are known to be more powerful especially to superpose 
additional data. Dot charts may be used not only to compare the 
influence of input factors on a single model output but also to compare 
the influence of input factors on a number of model outputs. For instance, 
in Subsection 7.1, we present dot charts, which are used to investigate if 
the degree of influence from an input factor changes when each 
compartment’s 2CO  content in three different years are considered. On 

the same dot charts, we also display the results from two different 
numbers of model runs. This allows us to investigate the effect of sample 
size on the model predictions. 

6. Star Plots 

Star plots are used for representing multivariate data in two 
dimensions. They are made of sequences of equiangular rays called radii. 
Each ray extending from the center of a circle represents one variable. 
Then the measurements are linked with lines, which give the plot a star-
like shape. The values of the measurements occupy a circle, and the fact 
that the starting points correspond to the end points facilitates 
comparison between cases. 
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Star plots can be used to visualize sensitivity measurements of the 
model response(s) to the uncertainties about the model inputs. Each ray 
in a star plot then represents one of the model input factors. The input 
factor furthest from the center of the circle indicates that this is the most 
influential input on the output. Conversely, an input plotted closest to 
the center is identified as the least influential input with the lowest 
sensitivity measure. 

In Subsection 7.2, we use star plots to present results from an SA 
method applied to the 25-compartment model. 

7. Results 

The two types of graphs we suggest for use with SA can be used to 
display any quantitative parametric or nonparametric sensitivity 
measure. Here we present results from one parametric and one 
nonparametric approach. As the parametric approach, we considered 
standardized ranges as a measure of sensitivity for the 8-compartment 
model, and as the nonparametric approach, Cramér-von Mises test 
statistics as a measure of sensitivity for the 25-compartment model. 
First, we shall briefly describe these SA measures.  

Standardized range: This statistic was calculated using predictions 
from the standard one-at-a-time (OAT) design in which each input factor 
is changed individually while others are kept constant and SA is 
performed to quantify the change in the model output. 

First, the range of the 2CO  content of each compartment (say, 

compartment i) resulting from varying each input factor (say, initial 
condition j) over its range while keeping all other initial conditions at 

their nominal values, i.e., inm
ij

axm
ij YY −  is calculated at year t. Then, this 

output range of compartment i is standardized by the nominal value of 
this compartment’s initial content. 
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Because the compartmental outputs are time dependent functions of 
initial conditions of the compartments, to determine whether their 
importance changes through time, we examine the results from years 
1900, 2000, and 2100. Each ijSR  is derived by using 

[ ( ) ( )] ,SR D
i

inm
ij

axm
ijij xtYtY −=  

where D
ix  is the initial condition of compartment i at its nominal value. 

Also, to assess the effect of the number of model runs on the results,        
N = 100 and N = 5000 model simulations are considered. 

Cramér-von Mises test: This is one of the nonparametric statistical 
tests that are often desirable in SA because of our limited knowledge of 
the input factors and their associated distributions. 

The application of the Cramér-von Mises test to SA comes from the 
idea of partitioning the sample of an input factor under consideration 
into two sub-samples according to the quantiles of the output 
distribution. If the distributions of the input factor in the two sub-
samples can be proven to be different, then the input is identified as an 
influential input. Using the test statistics as a sensitivity measure, the 
relative importance of the input factors for each output variable can be 
obtained (i.e., the higher the test statistic calculated between an input 
factor and an output variable, the more influential the input is on that 
output variable). 

To express this in notation: The sample of a model input factor, say 
X, is partitioned into two sub-samples, say iX  and ,jX  according to the 

quantiles of the distribution of the model output, say Y. Let iX  be size 

1N  and jX  size ,2N  and ( )xS1  and ( )xS2  be the empirical distribution 

functions of these two sub-samples, respectively. The total area between 
the two empirical distributions gives us the Cramér-von Mises test 
statistic, which is denoted by CMT  and is defined as 
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7.1. Dot charts of standardized ranges 

The standardized ranges (SRs) of compartments due to varying each 
initial condition OAT are demonstrated as dot charts in Figures 3a and 
3b. These figures allow us to judge how compartmental contents differ in 
terms of SRs within the same year and also between years. In each frame 
of these figures, we have superimposed the SRs computed on the 
predictions of the model outputs based on N = 100 and N = 5000 model 
runs, so that the influence of the number of model runs on the SRs can 
easily be visualized. 
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Figure 3a. Dot charts showing how each compartmental output of the   
8-compartment model in years 1900, 2000, and 2100 is affected by the 
variation in the initial conditions D

1x  through D
4x  (above: x1 initial – x4 

initial) in terms of standardized ranges. In each frame ( )D  show results 
from N = 100 and ( )•  from N = 5000 model runs. 
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Figure 3b. Dot charts showing how each compartmental output of the   
8-compartment model in years 1900, 2000, and 2100 is affected by the 
variation in the initial conditions D

5x  through D
8x  (above: x5 initial – x8 

initial) in terms of standardized ranges. In each frame ( )D  show results 
from N = 100 and ( )•  from N = 5000 model runs. 
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Even though the range of SR values are not the same, the degree of 
sensitivity of each compartment to the uncertainty in the initial 

conditions of atmosphere ( )D1x  and both ocean compartments ( )DD
32 and xx  

does not appear to be changing, that is, the variation in all these three 
initial conditions influences the ground vegetation compartment the 
most, the nonwoody parts of trees compartment the second most, followed 
by the active soil carbon, atmosphere, and the detritus/decomposers 
compartments (see Figure 3a). The surface ocean, deep ocean, and the 
woody parts of trees compartments are the least influenced by these 
three initial conditions. 

Compared to the SR results on ,3
Dx  the SRs of all the compartments 

due to variation in the other seven initial conditions are much smaller 

(lower than 0.1), especially, the results due to uncertainty about D
4x  and 

D
6x  (see the lower-right frame in Figure 3a and the upper-right frame in 

Figure 3b). Considering how small the ranges of SRs are, it is difficult to 

say that changes in D
4x  and D

6x  affect any of the compartments at all. As 

seen in the lower-right frame of Figure 3a, the overlapping of the SRs 
from N = 100 (represented by open circles D ) and from N = 5000 
(represented by closed circles • ) model runs indicates that there is no 
noticeable change in the results when different numbers of model 
iterations are considered in the analysis. 

As Figures 3a and 3b show, the SRs hardly change from year to year 
no matter which N is used. The highest SR values result from the OAT 

design conducted on ,3
Dx  which are in the range of 0.3611 and 0.3708 

when N = 100, and between 0.3670 and 0.3765 when N = 5000 (see lower-
left frame in Figure 3a). 
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In the dot chart showing the SRs obtained from the analysis where 

only D
7x  was varied over its entire range, we see that with the results 

based on N = 100 model runs, the variation in D
7x  is equally and most 

effective on nonwoody parts of trees and ground vegetation 
compartments followed closely by atmosphere, detritus/decomposers, and 
active soil carbon compartments, while the ocean and woody parts of 

trees compartments are the least influenced by .7
Dx  When N = 5000 

model runs are considered, there is no change in the SR of four of the 
compartments, namely, nonwoody parts of trees, atmosphere, 
detritus/decomposers, and active soil carbon compartments. For the other 
three compartments, the SRs increase but only by 0.00001. 

Again using the SRs of compartmental contents at three chosen 
years, we can also assess how the order of importance of the initial 
conditions change within the same compartment, i.e., which input factors 
are most influential. It is clear from the dot charts of the SRs given in 

Figures 3a and 3b that D
3x  is the most influential initial condition on all 

compartmental outputs, followed in order by ,,,,,, 671528
DDDDDD xxxxxx  and 

.4
Dx  This order of relative importance based on the SR values does not 

change with the number of model runs and time. 

As with ,, 21
DD xx  and ,3

Dx  the variation in the initial conditions of the 

woody parts of trees ( )D5x  and active soil carbon ( )D8x  compartments 

appear to influence the ground vegetation, nonwoody parts of trees, 
active soil carbon, atmosphere, and detritus/decomposers compartments 
more (in descending order of sensitivity in terms of SRs) (see Figure 3b). 

The effect of D
5x  and D

6x  on the two ocean and the woody parts of trees is 

relatively low. 
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7.2. Star plots of Cramér-von Mises test results 

For the 25-compartment model, using simulation of N = 5000 runs, 
we calculated the Cramér-von Mises test statistics and presented the 
results (from year 2100) in Figures 4a – 4d using star plots. These plots 
allow us to compare the influences of the input factors on each 
compartmental output. The radius of the stars extending from the center 
of a circle represent a test statistic value computed on an input and an 
output variable. A long radius indicates that the corresponding input 
factor is important for the output variable under consideration. This 
graphical display proves to be a good way of picking out the most 
important input factors at a glance. 

In Figures 4a and 4b, which show the influence of the 30 input 
factors on the outputs of the atmosphere and the three ocean 
compartments in 2100 in terms of the Cramér-von Mises test statistic 
based on both the 50th and the 90th quantile partitioning, respectively, it 
is clear that the input factors AREA and HM have quite a significant 
influence on these four compartments. We should note that since the 
examination of star plots for all 18 deep ocean compartments revealed 
that the results do not change significantly, to conserve space we present 
results only from two of the 18 deep ocean compartments, namely, ‘deep 
ocean layer-5’ and ‘deep ocean layer-13’. Although the degree of 
importance of these two inputs is very close, the relative importance 
between these two most important inputs change with the two quantiles 
considered. For instance, for the surface ocean compartment with the 50th 
quantile partitioning AREA appears to be the most important and HM 
the second important input (see Figure 4a), but with the 90th quantile 
partitioning this order is reversed (see Figure 4b). 
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Figure 4a. Star plots of Cramér-von Mises test statistics based on the 
50th quantile partitioning for the output of: (a) atmosphere; (b) surface 
ocean; (c) deep ocean-layer-5; and (d) deep ocean-layer-13 compartments of 
the 25-compartment model at t = 2100. 
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Figure 4b. Star plots of Cramér-von Mises test statistics based on the 
90th quantile partitioning for the output of: (a) atmosphere; (b) surface 
ocean; (c) deep ocean-layer-5; and (d) deep ocean-layer-13 compartments of 
the 25-compartment model at t = 2100. 



SUZAN GAZIOĞLU 24

 

Figure 4c. Star plots of Cramér-von Mises test statistics based on the 
50th quantile partitioning for the output of: (a) nonwoody parts of trees; 
(b) woody parts of trees; (c) ground vegetation; (d) detritus/decomposers; 
and (e) active soil carbon compartments of the 25-compartment model at   
t = 2100. 
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Figure 4d. Star plots of Cramér-von Mises test statistics based on the 
90th quantile partitioning for the output of: (a) nonwoody parts of trees; 
(b) woody parts of trees; (c) ground vegetation; (d) detritus/decomposers; 
and (e) active soil carbon compartments of the 25-compartment model at  
t = 2100. 
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Compared to AREA and HM, the rest of the input factors do not 
appear to have much influence on the atmosphere and the three chosen 
ocean compartments (especially when the partitioning is based on the 
median). Figure 4a(a) shows that based on the 50th quantile partitioning 
the input factors TSL is the third and SIGB the fourth most influential 
inputs. Based on the 90th quantile partitioning (see Figure 4b(a)), TF is 
the third and TG the fourth most influential inputs, following AREA and 
HM. Similarly, an importance ranking of the input factors for the other 
output variables related to the other compartments can be obtained by 
examining their star plots. 

8. Discussion and Conclusion 

Models are needed to understand real world phenomena. However, 
any model is, at best, only an approximation of the system being 
modelled and is therefore inherently uncertain. This uncertainty can be 
reduced, and resulting model reliability increased, by carrying out 
sensitivity analysis (SA). This important modelling tool studies the 
effects of variations in model input parameters on the behaviour of model 
output(s). In this study, our focus is on the use of novel graphical tools 
with SA. While various commonly used graphical tools, such as 
scatterplots, histograms, radar charts, tornado charts, cobweb plots, bar 
charts, have found applications in SA, as Cooke and van Noortwijk [6] 
point out, there has been little theoretical development for the use 
graphical methods in SA. 

We suggest the use of dot charts and star plots with SA. In this 
study, we have demonstrated their application to a pair of 
compartmental models, which have been used for global carbon cycle 
modelling. The sensitivity measures we computed and displayed in the 
dot charts and the star plots were the standardized ranges on a 8-
compartment model and the Cramér-von Mises test statistics on a 25-
compartment model. 
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The dot charts we present in this study allowed us to compare the 
SRs of all model outputs (the 2CO  contents of all eight compartments at 

time t) to the uncertainty in each model input factor. They are powerful 
tools, allowing us to superpose additional data and so judge not only how 
compartmental contents differ in terms of SRs within a given year but 
also between years (such as 1900, 2000, and 2100). Additionally, by 
superimposing the SRs computed on the model predictions based on two 
different numbers of model runs (N = 100 and N = 5000) we were able to 
easily see the influence of N on the SRs. 

In these dot charts, we displayed the SRs on the horizontal axis and 
the compartment names on the vertical axis, making it easy to read the 
names of the compartments with no need to rotate or abbreviate them. 
Another advantage dot charts provide is that the scale along the 
horizontal axis does not require a zero baseline. This is important when 
sensitivity measures are similar to one another, as a zero baseline can 
hide detail. Dot charts with no zero base line make it easy to see even 
small differences. 

Star plots can be used with SA to compare the relative behaviour of 
all model input factors on model output(s). The length of the ray for any 
given model input represents the extent to which model output is 
sensitive to that input, making it easy to identify which input factors 
dominate the sensitivities of model output. By comparing star plots, we 
were also able to identify similarities and differences in the sensitivities 
of two or more model outputs to the same model inputs. 

We should note that these two types of graphs can be used to present 
not only the sensitivity measures we used in this study but also other 
sensitivity measures, such as sensitivity indices, the Pearson moment-
correlation coefficients, the Spearman rank correlation coefficients, 
standardized regression coefficients, standardized rank regression 
coefficients, the Morris means, the Smirnov test statistics, the Mann-
Whitney test statistics etc.. 
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The use of dot charts and star plots to present SA results on our test 
models showed that both of these graphical tools convey information 
quite well. They allowed us to easily identify the most influential input 
factors at a glance. They both are great tools which display sensitivity 
results in a clear, easy to read, and easy to interpret fashion. As neither 
of these graphs relies on colour, there is no loss of clarity if they are used 
in black and white publications. 

Both types of plots can be used in the preliminary stage of a study as 
screening tools, helping model users and/or developers identify which 
model input factors are influential, hence deserving close attention, and 
which ones are not so influential and can be left at their nominal values. 
This can significantly reduce the cost (both physical and computational) 
of an experimental study, especially when only a few of input factors 
have a significant effect on the model output(s). 
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